Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains.
نویسندگان
چکیده
Spt3 of Saccharomyces cerevisiae is a factor required for normal transcription from particular RNA polymerase II-dependent promoters. As a step towards analysing Spt3 structure-function relationships, we have identified and studied Spt3 homologues from three other yeasts: Kluyveromyces lactis, Clavispora opuntiae and Schizosaccharomyces pombe. Alignment of their predicted amino acid sequences shows an overall identity of 30% between all four homologues and suggests that three conserved domains are present in Spt3. When tested for function in S. cerevisiae, K. lactis SPT3 was shown to fully complement and S. pombe SPT3 to partially complement an spt3 delta mutation. These data demonstrate that Spt3 is functionally conserved among distantly related yeasts.
منابع مشابه
Characterization of a human homologue of the Saccharomyces cerevisiae transcription factor spt3 (SUPT3H).
Spt3 is a Saccharomyces cerevisiae transcription factor that is required in vivo for the transcription of a number of RNA polymerase II-transcribed genes. We report the cloning of the gene encoding the human homologue of Spt3, SUPT3H, and its initial functional analysis. The human and yeast Spt3 homologues share an overall identity of 30% that defines three conserved regions, suggesting possibl...
متن کاملFunctional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha.
Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLalpha, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH(2) termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLalpha, we mutated conse...
متن کاملCharacterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8.
The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex of Saccharomyces cerevisiae is a multifunctional coactivator complex that has been shown to regulate transcription by distinct mechanisms. Previous results have shown that the Spt3 and Spt8 components of SAGA regulate initiation of transcription of particular genes by controlling the level of TATA-binding protein (TBP/Spt15) associated with the ...
متن کاملIdentification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae.
Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations o...
متن کاملA SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae.
The conserved multi-subunit Ccr4-Not complex regulates gene expression in diverse ways. In this work, we characterize the suppression of temperature sensitivity associated with a mutation in the gene encoding the scaffold subunit of the Ccr4-Not complex, NOT1, by the deletion of SPT3. We determine that the deletion of SPT3, but not the deletion of genes encoding other subunits of the SAGA compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yeast
دوره 14 5 شماره
صفحات -
تاریخ انتشار 1998